Wednesday, 19 December 2012

Extra Knowledge !


Capacitance of simple systems

Calculating the capacitance of a system amounts to solving the Laplace equation ∇2φ=0 with a constant potential φ on the surface of the conductors. This is trivial in cases with high symmetry. There is no solution in terms of elementary functions in more complicated cases.
For quasi-two-dimensional situations analytic functions may be used to map different geometries to each other. See also Schwarz-Christoffel mapping.
Capacitance of simple systems
TypeCapacitanceComment
Parallel-plate capacitor \varepsilon A /d Plate CapacitorII.svg
Coaxial cable \frac{2\pi \varepsilon l}{\ln \left( R_{2}/R_{1}\right) } Cylindrical CapacitorII.svg
Pair of parallel wires\frac{\pi \varepsilon l}{\operatorname{arcosh}\left( \frac{d}{2a}\right) }=\frac{\pi \varepsilon l}{\ln \left( \frac{d}{2a}+\sqrt{\frac{d^{2}}{4a^{2}}-1}\right) }Parallel Wire Capacitance.svg
Wire parallel to wall\frac{2\pi \varepsilon l}{\operatorname{arcosh}\left( \frac{d}{a}\right) }=\frac{2\pi \varepsilon l}{\ln \left( \frac{d}{a}+\sqrt{\frac{d^{2}}{a^{2}}-1}\right) }a: Wire radius
d: Distance, d > a
l: Wire length
Two parallel
coplanar strips
\varepsilon l \frac{ K\left( \sqrt{1-k^{2}} \right) }{ K\left(k \right) }d: Distance
w1, w2: Strip width
ki: d/(2wi+d)
k2: k1k2
K: Elliptic integral
l: Length
Concentric spheres \frac{4\pi \varepsilon}{\frac{1}{R_{1}}-\frac{1}{R_{2}}} Spherical Capacitor.svg
Two spheres,
equal radius
2\pi \varepsilon a\sum_{n=1}^{\infty }\frac{\sinh \left( \ln \left( D+\sqrt{D^{2}-1}\right) \right) }{\sinh \left( n\ln \left( D+\sqrt{ D^{2}-1}\right) \right) }
=2\pi \varepsilon a\left\{ 1+\frac{1}{2D}+\frac{1}{4D^{2}}+\frac{1}{8D^{3}}+\frac{1}{8D^{4}}+\frac{3}{32D^{5}}+O\left( \frac{1}{D^{6}}\right) \right\}
=2\pi \varepsilon a\left\{ \ln 2+\gamma -\frac{1}{2}\ln \left( \frac{d}{a}-2\right) +O\left( \frac{d}{a}-2\right) \right\}
a: Radius
d: Distance, d > 2a
D = d/2a
γ: Euler's constant
Sphere in front of wall4\pi \varepsilon a\sum_{n=1}^{\infty }\frac{\sinh \left( \ln \left( D+\sqrt{D^{2}-1}\right) \right) }{\sinh \left( n\ln \left( D+\sqrt{ D^{2}-1}\right) \right) } a: Radius
d: Distance, d > a
D = d/a
Sphere 4\pi \varepsilon a a: Radius
Circular disc 8\varepsilon a a: Radius
Thin straight wire,
finite length
 \frac{2\pi \varepsilon l}{\Lambda }\left\{ 1+\frac{1}{\Lambda }\left( 1-\ln 2\right) +\frac{1}{\Lambda ^{2}}\left[ 1+\left( 1-\ln 2\right) ^{2}-\frac{\pi ^{2}}{12}\right] +O\left(\frac{1}{\Lambda ^{3}}\right) \right\} a: Wire radius
l: Length
Λ: ln(l/a)

No comments:

Post a Comment