Capacitance of simple systems
Calculating the capacitance of a system amounts to solving the Laplace equation ∇2φ=0 with a constant potential φ on the surface of the conductors. This is trivial in cases with high symmetry. There is no solution in terms of elementary functions in more complicated cases.
For quasi-two-dimensional situations analytic functions may be used to map different geometries to each other. See also Schwarz-Christoffel mapping.
| Type | Capacitance | Comment |
|---|---|---|
| Parallel-plate capacitor | ![]() |
ε: Permittivity
|
| Coaxial cable | ![]() |
ε: Permittivity
|
| Pair of parallel wires | ![]() | |
| Wire parallel to wall | ![]() | a: Wire radius d: Distance, d > a : Wire length |
| Two parallel coplanar strips | ![]() | d: Distance w1, w2: Strip width ki: d/(2wi+d) |
| Concentric spheres | ![]() |
ε: Permittivity
|
| Two spheres, equal radius | ![]() ![]() ![]() | a: Radius d: Distance, d > 2a D = d/2a γ: Euler's constant |
| Sphere in front of wall | ![]() | a: Radius d: Distance, d > a D = d/a |
| Sphere | ![]() | a: Radius |
| Circular disc | ![]() | a: Radius |
| Thin straight wire, finite length | ![]() | a: Wire radius : LengthΛ: ln( /a) |




: Wire length







![\frac{2\pi \varepsilon l}{\Lambda }\left\{ 1+\frac{1}{\Lambda }\left( 1-\ln 2\right) +\frac{1}{\Lambda ^{2}}\left[ 1+\left( 1-\ln 2\right) ^{2}-\frac{\pi ^{2}}{12}\right] +O\left(\frac{1}{\Lambda ^{3}}\right) \right\}](http://upload.wikimedia.org/math/8/e/d/8ed16f312307e41ae8adbc3394ac0cdc.png)
No comments:
Post a Comment